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The experimental  data on orientation in electrophilic substitution reactions of compounds 
of the furan and thiophene se r ies  that bear  e lec t ron-accep tor  substituents were examined. 
Within the f ramework  of the C NDO/2 method, the electronic s t ruc tures ,  dipole moments,  
and s p i n - s p i n  coupling constants in the PMR spect ra  were calculated for model sys tems - 
2-formylthiophene,  furfural ,  and their  oxygen-protonated forms.  The resul ts  of the ca l -  
culations are  compared with the available experimental  data on the dipole moments and 
s p i n - s p i n  coupling constants,  which made it possible to discuss  the geometr ica l  s t ruc -  
tures  of the compounds. An analysis  of data on the chemical behavior of these com-  
pounds demonstrated that, in contras t  to the charges  found using the 1r-electron approxi-  
mation, the total charges  on the atoms calculated by the CNDO/2 method are  ra ther  ef-  
fective indexes of the react ivi ty .  

One of the specific charac te r i s t i cs  in the historical  profile of the development of the chemis t ry  of 
heterocycl ic  compounds is the fact that three heterocycl ic  sys tems  - furan, thiophene, and pyrro le  - a re  
often considered jointly by comparing them with the benzene system.  If, however, one proceeds f rom the 
fundamental formal -c lass i f ica t ion  principles based on the number of atoms in the ring, this sor t  of com- 
parison is invalid: f rom this point of view, a comparison of benzene with, for example, pyridine and other 
s ix -membered  heterocycles  would be more  valid. However, a compar ison of the above "tr iad" with ben- 
zene is, in fact, completely expedient if one proceeds f rom the totality of the chemical  proper t ies  peculiar  
to these compounds, which can be te rmed aromat ic  compounds.* If th is  problem is approached f rom the 
positions of the electronic theory in its broad sense,  it is known that the common charac te r  of their  prop-  
er t ies  is associa ted with the presence  of an electron sextet. In addition, it is quite apparent that the p r e s -  
ence of an aromat ic  sextet all by itself cannot determine all of the peculiari t ies  of the reactivi ty,  and it is 
precise ly  in heterocycl ic  sys tems that nonequivalence of the positions is manifested; this nonequivalence 
is a consequence of the very  s t ructure  of these compounds and is associated with the nonuniform d is t r i -  
bution of the e lec t ron density in them. This is especial ly c lear ly  seen in the case of compounds of the furan 
and thiophene se r ies ,  which are  the subject of this paper.  

O r i e n t a t i o n  d u r i n g  E l e e t r o p h i l i e  S u b s t i t u t i o n  

in t h e  T h i o p h e n e  a n d  F u r a n  S e r i e s  

In thiophene and furan, substitution react ions of any type (eleetrophilic,  radical ,  protophilic, or nu- 
eleophilie) occur  pr imar i ly  at the a position of the ring. Data that make it possible to give a quantitative 

*In speaking of aromatic i ty ,  it should be borne in mind that this concept current ly  does not have agenera l ly  
accepted definition. Nevertheless ,  the common charac te r  of such sys tems can be established at least  with 
respec t  to some charac te r i s t i cs  (see [1] for example). 
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es t imate  of the reac t iv i t i e s  of f i v e - m e m b e r e d  he tero -  
cyc l i c  compounds,  including those that belong to the furan 
and thiophene s e r i e s ,  have recent ly  been obtained in a 
number of papers by means  of d irect  kinetic m e a s u r e -  
ment  or by the method of compet i t ive  react ions .  For 
example ,  bromination of thiophene in acet ic  acid at 25~ 
in the ~ posit ion proceeds  at a rate that is nine orders  
of magnitude greater  than the bromination of benzene 
[2], while the bromination of furan proceeds  at a rate 
that is 11 orders  of magnitude greater  than the bromina-  
tion of benzene.  We note in this case  that the bromina-  
tion of thiophene apparently proceeds  via the same  m e c h -  
an i sm [4] as the bromination of benzene and represen t s  
the usual (for aromat ic  compounds) e lectrophi l ic  sub- 
stitution that proceeds  through intermediate  formation 
of a ~ complex .  The reac t iv i t i e s  of the/~ posi t ions  are 
s evera l  orders  of magnitude lower  than the reac t iv i t i e s  
of the ~ pos i t ions .  For example ,  deuterium atoms in 
the ~ posit ion of thiophene are exchanged at a rate that 
is  three orders  of magnitude greater  than in the/~ po- 
s it ion [5] during protodedeuteration in acid, while  bro-  
ruination with molecular  bromine in acet ic  acid proceeds  
at the ~ posit ion at a rate that is  2.5 orders  of magnitude 
greater  than the rate in the fi posit ion [6]. It is  important 
to note that the di f ferences  in the reac t iv i t i e s  for the 
fi posit ions of furan and thiophene are considerably l e s s  
than for the ~ posit ions [7-9].  

The high reac t iv i t i e s  of the ~ posi t ions  of the thio-  
phene and furan rings cause speci f ic  diff iculties in the 
synthes i s  of /~-substi tuted der ivat ives .  Even when one 
of the (~ posi t ions  has e l ec t ron-acceptor  substi tuents ,  
the orientation during e lectrophf i ic  substitution react ions  
is  determined to a considerable  degree  by the effect  of 
the heteroatom,  such that, under the usual conditions,  
the substituting group is directed mainly (and often a l -  
mos t  exc lus ive ly)  to the free  ~ ' posit ion of the thiophene 
and, in particular,  furan rings [10-12]. Invest igat ions 
carr ied  out in recent  y e a r s  in the Laboratory of Here to -  
cyc l i c  Compounds of the Ze l inski i  Institute of Organic 
Chemis try ,  Academy of Sc iences  of the USSR, have c r e -  
ated broad poss ib i l i t i e s  for a change in the speci f ic i ty  
of e leetrophfi ic  substitution react ions  of a - carbony l  c o m -  
pounds of the thiophene and furan s e r i e s  based on c o m -  
plexing with aluminum chloride [11, 13-16]* or protona- 
tion [17-21].  In the course  of the invest igat ions ,  it was  
ascerta ined that the products formed during the b r o m i -  
nation [11, 14], acylat ion [13], and chloromethylat ion [15, 
16] of c o m p l e x e s  of 2- formylthiophene and 2 -ace to th ien-  
one with aluminum chloride contain no l e s s  than 93-99% 
of the 4-subst i tuted der ivat ives .  This  effect  is  explained 
[11, 17] by re in forcement  of the e l e c t r o n - a c c e p t o r  ca-  
pacity of the carbonyl group as a consequence of c o m -  
plexing or protonation. This  leads  to a substantial de-  
c r e a s e  in the e lectron density and, consequently,  the r e -  

*See [11] for citations of e a r l i e r  s tudies .  
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T A B L E  2. E l e c t r o n  P o p u l a t i o n s  of the v AO for  U n p r o t o n a t e d  (I) and  
P r o t o n a t e d  (II) F u r f u r a l  and  2 - F o r m y l t h i o p h e n e  M o l e c u l e s  

Compu- Struc- 
methodtati~ ture q, 'r q=a q~a , q~c qsC qc,,o c .  qcrro o 

Hiickel 
"MO 

C/PPP 

CNDO/2 

H{ickel 
MO 

C/PPP 

CNDO/2 

i +0,13 
I +0,13 

+0,15 
II +0,15 
IB +0,26 

II A +0,25 
II:C +0,14 

+0,28 
I +0,29 

+0,27 
+0,28 , I  I B +0,03* 

II A +0,05* 

Furfural (X = O) 

--0,05 + 0 , 1 2  -0,05 
- -  0,06 + 0,20 - 0,06 
--0,04 + 0 , 0 4  -0,06 
-0,06 + 0 , 1 5  -0,06 
--0,09 - -0 ,01  --0,07 
--0,19 + 0 , 1 9  --0,08 
--0,11 + 0 , 0 6  +0,05 

2-Formylthiophene (X = S) 

- 0,07 + 0,07 - 0,08 
--0,07 + 0 , 1 3  -0,07 
-0,06 0,05 --0,08 
-0,07 + 0 , 1 0  --0,0~ 
-0,04 + 0 , 0 6  +0,01 
-0,14 + 0 , 2 1  --0,(H 

+0,16 
+ 0,23 
+ 0,07 
+0,16 
- -  O ,03 
+0,13 
--0,11 

+0,,10 
+0,16 
+0,03 
+0,11 

0,00 
+0,12 

+0,28 
+0,36 
+0,18 
+0,3,7 
+0,15 
+ 0,36 
+0,1,1 

+0,28 
+ 0,37 
+0,18 
+0,3~ 
+0,15 
+ 0,40 

-0,58 
-0,81 
-0,34 
-0,71 
-0,21 
-0,66 
-0,14 

-0,58 
-0,81 
-0,34 
-0,72 
-0,2o 
-0,64 

*The to t a l  va lue  of the  e l e c t r o n i c  popu la t ions  of the  pv and d v AO. 
The e l e c t r o n  popu la t ion  of the  p~ AO i s  +0 .21 .  

a c t i v i t y  d u r i n g  e l e c t r o p h i l i c  s u b s t i t u t i o n  in the  3 and 5 p o s i t i o n s  of the  h e t e r o c y c l e ,  and  a c o m p a r a t i v e l y  
l e s s e r  r e f l e c t i o n  on the a c t i v i t y  of the  4 p o s i t i o n s ,  such  tha t  the  l a t t e r  p r o v e d  to be m o r e  r e a c t i v e  than  the 
f r e e  a '  p o s i t i o n .  

[ol~... H § 

The d i s s i m i l a r  d e g r e e  of r e d u c t i o n  in the  e l e c t r o n  d e n s i t y  in the  v a r i o u s  p o s i t i o n s  of the  th iophene  
r i n g  is g r a p h i c a l l y  d i s p l a y e d  on c o m p a r i s o n  of the c h e m i c a l  sh i f t s  of the  p r o t o n s  in the  PMR s p e c t r a  of 
the  f r e e  and A I C l 3 - c o m p l e x e d  2 - f o r m y l t h i o p h e n e  and 2 - a c e t y l t h i e n o n e  [16]. Al though  it does  not l e a d  to 
a s  p r o n o u n c e d  a change  in the  o r i e n t a t i o n  as  du r ing  c o m p l e x i n g  wi th  AICI3, p r o t o n a t i o n  of the c a r b o n y l  g roup  
undoubted ly  f a c i l i t a t e s  a t t a c k  of the  e l e c t r o p h i l i c  r e a g e n t  a t  the  4 p o s i t i o n  of the  th iophene  r ing ,  wh ich  is 
d e m o n s t r a t e d  d u r i n g  the n i t r a t i o n  [17-19],  b r o m i n a t i o n  [20], and c h l o r o m e t h y l a t i o n  [21] of 2 - f o r m y l t h i o p h e n e  
and 2 - a c e t o t h i e n o n e  in c o n c e n t r a t e d  s u l f u r i c  ac id .  

I n s o f a r  a s  one can  judge f r o m  the a v a i l a b l e  and,  a s  y e t ,  s c a n t y  da ta ,  the  c o m p l e x e s  of c a r b o n y l  c o m -  
pounds  of the  f u r a n  s e r i e s  d i f f e r  s u b s t a n t i a l l y  in r e a c t i v i t y  f r o m  the th iophene  a n a l o g s .  F o r  e x a m p l e ,  the  
b r o m i n a t i o n  of f u r f u r a l  and  2 - a c e t y l f u r a n  g i v e s  4 , 5 - d i s u b s t i t u t e d  d e r i v a t i v e s  a s  the  m a j o r  p r o d u c t s ,  r e -  
g a r d l e s s  of the a m o u n t  of b r o m i n e  u s e d  [11], and  only i n s ign i f i c a n t  a moun t s  of 4 -  [22] and 5 - m o n o s u b s t i -  
t u t ed  [11] compounds  can  be i s o l a t e d .  In o t h e r  r e a c t i o n s ,  w h i c h  s top  at  the  s t e p  invo lv ing  the  m o n o s u b -  
s t i t u t e d  c o m p o u n d s ,  the  5 - s u b s t i t u t e d  2 - c a r b o n y l  compounds  of the  f u r a n  s e r i e s  a r e  i s o l a t e d  as  the  m a j o r  
and ,  m o s t  of ten ,  the  only r e a c t i o n  p r o d u c t .  Th i s  s o r t  of  o r i e n t a t i o n  m a y  be c o n s i d e r e d  to be a r u l e  t o w h i c h  
only one e x c e p t i o n  is known: 4 - i s o p r o p y l f u r f u r a l  [23] is  f o r m e d ,  a l though  in low y i e l d ,  in the  i s o p r o p y l a t i o n  
of f u r f u r a l  in the p r e s e n c e  of e x c e s s  a l u m i n u m  c h l o r i d e .  The  e x c l u s i v e n e s s  of t h i s  r e s u l t  is  e m p h a s i z e d  
by the f ac t  tha t ,  a c c o r d i n g  to the  r e s u l t s  in [24l, 5 - t e r t - b u t y l f u r f u r a l  is  f o r m e d  d u r i n g  the t e r t - b u t y l a t i o n  
of f u r f u r a l  u n d e r  s i m i l a r  c o n d i t i o n s .  

The  p r e d o m i n a n t  s u b s t i t u t i o n  in the  5 p o s i t i o n  of f u r a n  r i n g s  tha t  b e a r  e l e c t r o n - a c c e p t o r  s u b s t i t u e n t s  
can  be c o n s i d e r e d  to be a c o n s e q u e n c e  of the  a b o v e - n o t e d  h i g h e r  a c t i v i t y  of the a p o s i t i o n s  in f u r a n  as  c o m -  
p a r e d  wi th  th iophene .  H o w e v e r ,  t h i s  s o r t  of e x p l a n a t i o n  cannot  be c o n s i d e r e d  to be c o m p l e t e ,  s i n c e  the  
m e c h a n i s m s  of the  r e a c t i o n s  of f u r a n  compounds  and t h e i r  th iophene  a n a l o g s  m a y  d i f f e r  f r o m  one a n o t h e r .  
In f ac t ,  the f u r a n  s y s t e m  has  a n u m b e r  of p e c u l i a r i t i e s  a s  c o m p a r e d  w i th  the  th iophene  s y s t e m .  Inc luded  
among  t h e s e  p e c u l i a r i t i e s  a r e  i t s  a c idophob ic  c h a r a c t e r ,  c l e a r l y  e x p r e s s e d  con juga t ed  d iene  p r o p e r t i e s ,  
and a c a p a c i t y  fo r  r i n g  opening ,  w h i c h  a r e  a l s o  r e t a i n e d  fo r  compounds  tha t  b e a r  e l e c t r o n - a c c e p t o r  s u b -  
s t i t u e n t s .  F o r  e x a m p l e ,  the n i t r a t i o n  of fu ran  c ompounds ,  inc lud ing  f u r f u r a l ,  2 - a c e t y l f u r a n ,  and e s t e r s  of 
f u r a n - 2 - c a r b o x y l i c  a c i d ,  by a c e t y l  n i t r a t e  p r o c e e d s  t h r o u g h  add i t i on  to  the  2,5 p o s i t i o n s  to  f o r m  a r a t h e r  
s t a b l e  adduc t ,  w h i c h  i s  c o n v e r t e d  to 5 - n i t r o - s u b s t i t u t e d  f u r a n s  u n d e r  the  in f luence  of b a s e s  [25]: 
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The furan ring may open under the influence of acidic agents in protic solvents, and this is often ac- 
companied by oxidation; compounds that are stabilized by negative substituents can participate in such re- 
actions [26-28]. Thus a study of the specificity of the electrophilic substitution in the furan series is often 
substantially complicated by side processes and the specific peculiarities of the mechanism. 

R e s u l t s  o f  C a l c u l a t i o n s  b y  t h e  C N D O / 2  M e t h o d  a n d  D i s c u s s i o n  

F o r  a qua l i t a t i ve  and s e m i q u a l i t a t i v e  d i s c u s s i o n  of the  i n f o r m a t i o n  s t a t e d  above ,  we fe l t  i t  wou ld  be 
use fu l  to p e r f o r m  q u a n t u m - c h e m i c a l  c a l c u l a t i o n s  of s e v e r a l  m o d e l  s y s t e m s ,  w h i c h  would  make  i t  p o s s i b l e ,  
on the  b a s i s  of the r e a c t i v i t y  indexes  found, to  c o m p a r e  and i n t e r p r e t  the  c h e m i c a l  b e h a v i o r  of f u r a n  and 
th iophene  compounds  t ha t  b e a r  e l e c t r o n - a c c e p t o r  s u b s t i t u e n t s .  We s e l e c t e d  the  s i m p l e s t  m o d e l  c o m p o u n d s -  
2 - f o r m y l t h i o p h e n e  and 2 - f o r m y l f u r a n  (I) and  t h e i r  c a r b o n y I - o x y g e n - p r o t o n a t e d  f o r m s  (II). 

The  e n e r g i e s  (~E) ,  d ipo le  m o m e n t s  (#), t o t a l  c h a r g e s  on the a t o m  (Q), and  the s p i n - s p i n  coupl ing  
c o n s t a n t s  (J) c a l c u l a t e d  fo r  t h e s e  s y s t e m s  a r e  p r e s e n t e d  in Tab le  1. The  i n d i c a t e d  v a l u e s  w e r e  ob ta ined  
wi th in  the  f r a m e w o r k  of the  MO LCAO me thod  wi th  " c o m p l e t e  n e g l e c t  of d i f f e r e n t i a l  o v e r l a p "  (CNDO/2) 
u s ing  the p a r a m e t r i z a t i o n  p r o p o s e d  in [29]** Th i s  m e t h o d  r e c o m m e n d s  i t s e l f  we l l  in p r a c t i c a l  c a l c u l a t i o n s  
of many  p r o p e r t i e s  of m o l e c u l e s  ( see  [35], fo r  e x a m p l e ) ,  inc luding  those  tha t  a r e  a s s o c i a t e d  wi th  the  r e -  
a c t i v i t i e s  of a n u m b e r  of o r g a n i c  compounds  [36-42].  In p a r t i c u l a r ,  the  t o t a l  e l e c t r o n i c  c h a r g e s  of the  r e -  
a c t i on  c e n t e r s ,  found by the  CNDO/2 me thod ,  w e r e  t a k e n  in [42] a s  a m e a s u r e  of the  r e a c t i v i t i e s ,  and  the  
r e a c t i v i t i e s  of benzene  d e r i v a t i v e s  w e r e  i n t e r p r e t e d  on the b a s i s  of a c o m p a r i s o n  of t h e m .  The  CNDO/2 
m e t h o d  w i th  s e v e r a l  d i f f e r en t  p a r a m e t e r  v a l u e s  was  u sed  in c a l c u l a t i o n s  of the  fu ran  [43] and th iophene  
[44] m o l e c u l e s .  

G e o m e t r i c a l  S t r u c t u r e .  The g e o m e t r i c a l  s t r u c t u r e s  of the  f u r a n  and th iophene  r i ng  in c a l c u l a t i o n s  
of s y s t e m s  I and  II  w e r e  t aken  in c o n f o r m i t y  wi th  the  e x p e r i m e n t a l  da t a  [45, 46], and  the s t a n d a r d  ang l e s  
and bond l eng ths  [31] w e r e  a s s u m e d  for  the  CHO subs t i t ue n t .  Two p l a n a r  c o n f o r m a t i o n s  (IA and IB) w e r e  
c o n s i d e r e d :  

= 

H 0 
JA IB 

C a l c u l a t i o n  p r e d i c t s  only a s l i gh t  d i f f e r e n c e  in the  to ta l  e n e r g i e s  of t h e s e  f o r m s  (A E t = EIB--  EIA > 0), 
w h i c h  is  in q u a l i t a t i v e  a g r e e m e n t  w i th  the  e s t i m a t e  [511 made  on the  b a s i s  of e x p e r i m e n t a l  da t a  on J c o n -  

*The c a l c u l a t i o n s  w e r e  m a d e  w i th  a BLSM-6 c o m p u t e r  wi th  the  p r o g r a m  p r e s e n t e d  in [301. The d ipo le  t oo -  
mer i t s  w e r e  c a l c u l a t e d  in a c c o r d a n c e  wi th  the  m e t h o d  in [311. The  3d -AO was  t aken  into accoun t  fo r  the  
su l fu r  a t o m  [32, 33]. The  i n d i r e c t  s p i n - - s p i n  coupl ing  c o n s t a n t s  of the  p r o t o n s  w e r e  e s t i m a t e d  f r o m  the 
expre s s ion 

32~ 
] ~ ' = M  ' I % H ' = ~ '  "~.7~2" ~o ~- [S~(O) 14.n~" , 

9 (1) 

w h e r e  
occ free XXCiH'CiH''CjH'CjH" 

aHH'=4 (2) 
E~--E~ j 

The 7rHH, values are the mutual atomic-atomic polarizabilities of the is-AO of the H and H' atoms. The 
summation in (2) is carried out with respect to the occupied (~l'i) and free (q,j) molecular orbitals with en- 
ergies (in atomic units, one atomic unit =27.2 eV) E i and Ej, respectively (eiH and CjH are the coefficients 
of expansion of the MO in terms of the AO). The same symbols as in [34] are taken in expression (1), but 
the semiempirical parameter k =5.5 is additionally introduced. This parameter is invoked first to take 
into account the fact of the difference in the effective charge (}H) of the nucleus of the H atom from unity, 
since s H (0) values were calculated for }H =1 (for greater detail see [35], for example), and second, to~com - 
pensate" for the approximation consisting in the use in (2) of the difference in orbital energies (Ej- E i) in- 
stead of the average energy of the singlet-triplet excitation A3Ei__~ j = Ej-- E i -  Jij (Jij is the coulombic in- 
tegral between the ~i and ~,j MO). 
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stants,  although calculation and experimental  data in [52] indicate that these ve ry  JCHO-5H and JCHO-4H 
constants were  er roneously  assigned for s t ruc tures  IA to IB, and vice ve r sa ,  in [51]. In addition, calcula-  
tion indicates that the dipole moment in both cases  (X =O and X = S) should be l a rge r  for conformation IB 
than for conformation IA. It can therefore  be expected that 2- formyl-subs t i tu ted  furan and thiophene will 
exist p r imar i ly  in fo rm IB in polar  solvents,  which is due to the influence of solvation effects,  which are 
capable of quite markedly shifting the equilibrium to favor the conformation with the l a rge r  dipole moment.  
On the basis of the data in the l i te ra ture  [52-56], it can be concluded that the IB conformation (X=O, S) is 
actually apparently the p r im a ry  one for aldehydes and ketones of the furan and thiophene se r ies .  

The formation of protonated forms of aldehydes, ketones, and carboxylic acids in strongly acidic me-  
dia was studied by NMR spectroscopy,  and it was demonstrated that the protonated forms can exist as two 
geometr ica l  i somers  relat ive to the C =O bond, or in other words,  the COH + angle (0) differs f rom 180 ~ 
[57-61]. A s imi lar  s t ructure  was established also for a number of adducts formed by oxygen-containing 
donors and Lewis acids [62-64]. The resul ts  of the CNDO/2 calculation of protonated formaldehyde and 
acetaldehyde, in which it was found that 0 = 120 ~ which is in qualitative agreement  with sp2 hybridization 
of the oxygen atom [65] (see also [66]), are  in agreement  with this conclusion. 

To follow how the e lectron density in the protonated form is redistr ibuted as com~)ared with the un- 
o 

protonated form, we examined two s t ruc tures  (IIA and liB) with 0 =120 ~ and rOH =0.96 A. Calculations 
within the f ramework of the CNDO/2 method led to only a slight difference between the total energy of these 
s t ruc tures  (AEAB ~ 2 kcal/mnle)  and a s imi lar  redis tr ibut ion of charges  for both forms as compared with 
their  distribution in unprotonated form IB. 

O'"H§ § 
IIA II B 

Electronic Populations of the v AO. The electronic populations of the v AO, which are  often used as 
reactivi ty indexes [67], were calculated along with the total charges  on the atoms presented in Table 1. 
These calculations were per formed by the CNDO/2 method, i.e., with allowance for all of the valence e lec-  
t rons ,  and in two variants  of the Hiickel method: 1) C / P P P  - in the zero approximation of the P a r i s e r -  
P a r r - P o p l e  scheme with selection of the diagonal and nondiagonal matr ix  elements  of the F operator  by 
the CNDO/2 method [68]; 2) the Htickel MO method - within the f ramework  of the simple Hiickel method 
with the pa ramete r s  for coulombic and resonance integrals recommended by Strei twieser  [67] (the 3d AO 
of the sulfur a tom were  disregarded) .* The qpV values {except, perhaps,  for q4 C for li when X =S and q3 C 
and q5 C for I when X=O) obtained by the C / P P P  and Hiickel MO methods are  qualitatively in comparat ively 
good agreement  with the values calculated by the CNDO/2 method (see Table 2). This means that the e lec-  
t rons  that part icipate in the format ion of a bonds have only a slight effect on the distribution of the I t -e lec-  
t ron density, and the extensively used v -e lec t ron  approximation may be sa t i s fac tory  for evaluating the dis-  
tribution of charges  in the 7r sys tem.  However, as will be demonstrated below, the distribution of charges  
in the v sys tem cannot be made to sat isfactor i ly  agree with the react ivi ty data. 

*The formation of a protonated form,  which, for  convenience, we will also designate in t e rms  of li, was 
modeled in the Hiickel method by means of a change in the coulombic integral (a~) of the oxygen atom, to 
which a proton (H +) is added. Within the f ramework  of perturbation theory,  the Aqp v values at which the 
electron populations of the v AO (gap) change can be calculated f rom the express ion 

hq~ = U~OAa~) (3) 

and, according to the Hiickel MO method, are  (Ac~ G in fi units): AchS=0.011A~6, Aq2C =--0.008A~(~, Aq3C = 
0.094A~6, AqaC = 0.008A~ 6, AqsC = 0.090A C~ 6 ,  AqCHO C = 0.162Ac~ (~, and AqCHO O = - 0.356Ac~ 6 for X = S; 
AqlO =0.002A(~,  Aq2C = -  0 . 0 1 6 A ~ ,  Aq3C =0.112A~d, Aqa C = 0.003AC~), Aq5C =0.106A~O, AqcHoC =0.160 
AC~6, and A q c H o O = - 0 . 3 6 7 A c ~ 6  for X=O.  It follows f rom the expressions writ ten out above that the r e -  
distribution of the e lectron density in the v sys tem occurs  s imi lar ly  in both cases  (the signs of the c o r -  
responding AqTr t e rms  are  identical), and AchC> 0, and AqsC> 0. In addition, the Hiickel method was used 
to directly calculate the q V values for ~6=C~)'(A~ O = s 0 )  , the resul ts  of which are  presented in Table 2 
along with the values found f rom the CNDO/2 method. 
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C o m p a r i s o n  o f  t h e  C h e m i c a l  B e h a v i o r  of  t h e  E x a m i n e d  

C o m p o u n d s  w i t h  t h e  E l e c t r o n - D e n s i t y  D i s t r i b u t i o n  

C a l c u l a t e d  f o r  T h e m  

This compar ison makes it possible to judge the effectiveness of the Q/z and q j r  values as react ivi ty 
indexes. Attempts to use the e lectron populations of the ~ AO (q~r) as such indexes in the interpretat ion 
of the experimental  data encounter a number of difficulties. Thus, f rom the data presented in Table 2, it 
can be concluded that the maximum electron density in all cases  is localized in the 4 position, and e lec t ro -  
philic substitution react ions for both protonated and unprotonated 2-formylthiophene and furfural  molecules 
should consequently be directed at the 4 position, which is not in agreement  with the experimental  data dis-  
cussed above. At the same t ime,  the total charges  (Q#) presented in Table 1 cor re la te  much better  with 
the principal tendencies manifested in the react ivi ty of 2-formyl  derivatives of thiophene and furan in e lec-  
t rophil ic  substitution react ions .  In fact,  calculation for the unprotonated 2-formylthiophene molecule dem- 
onstrates  increased electron density in the 5 position as compared with the 3 and 4 positions and in the 4 
position as compared  with the 3 and 5 positions for its protonated form, which is in complete agreement  
with the available experimental  data. The known cases  of substitution of an acyl group in the chemis t ry  
of thiophene may be associa ted with the increased electron density (Q2 C) in the 2 position [69, 70]. 
At f i rs t  glance, the resul ts  of calculation for the furfural  molecule are  in poorer  agreement  with the ex- 
per imental  data, since,  f rom the values presented in Table 1, it might have been concluded that the 4 po- 
sition should be more  active than the 5 position, not only in the protonated but even in the unprotonated mol-  
ecule. However, one 's  attention should be directed to the calculated high negative charge on the oxygen 
atom of the furan ring of furfural ,  which is also retained in the protonated form.  It seems to us that the 
presence  of this sor t  of charge makes it probable that the electrophil ic agent coordinates at the heteroatom 
of the ring with subsequent cleavage of the la t ter  or migrat ion of the substituent to the adjacent free a '  po- 
sition; i.e., as a lready noted, side p rocesses  and specific peculiari t ies  of the electrophil ic substitution 
mechanism are  possible in the case of furfural .  

In this connection, one 's  attention should also be directed to the fact that the l i tera ture  contains as -  
sumptions regarding the formation of protonated furfural  molecules (IIC) in which the protons add to the 
oxygen atom of the heterocycles  [27]. 

{~+ (Uc) 

There are  several  reasons  to expect that the formation of the IIC fo rm through direct  addition of the 
proton to the O 1 atom of the ring or as a resul t  of migrat ion f rom the cai:bonyl oxygen might lead to that 
redis tr ibut ion of the electron density in the furan ring which would promote subsequent attack of the e lec-  
trophil ic reagent  at the 5 position of the IIC fo rm.  However, calculation by the CNDO/2 method (Table 1) 
demonst ra tes  that the protonated form (liC) is considerably less  favorable f rom an energy point of view 
than the IIA and l ib  forms (AE t -  40 kcal /mole) .  It can therefore  be assumed that the protonated furfural  
molecules are  capable of existing pract ical ly  exclusively in the HA and l ib  forms,  while the liC form should 
be considered to be only a model of an unstable part icle  that is formed during cleavage of the furan r ing 
in acidic media or t r ans fo rmed  to stable 5-substi tuted compounds, which was discussed above. In addition, 
f rom the calculated data (Table 1), the IIC s t ructure  should be less  active in electrophil ic substitution r e -  
actions than IIA and IIB, since all of the ring atoms in it are  positively charged.  In contras t  to total charges 
Q2 C and Q5 C, the q2 C and q5 C charges  of the Ir AO are negative in the case of s t ructure  liC (Table 2), which 
is in agreement  with the qualitative concepts relat ive to the redistr ibution of the charges  in the I t -electron 
sys tem.  

The absence of a corre la t ion  between the Q/z and Clp 7r values in some cases  renders  impossible and, 
in others ,  places under doubt the interpretat ion of the react ivi t ies  of the conjugated molecules within the 
f ramework  of the v -e lec t ron  approximation. It is known [71, 72] that the 1r-electron populations (qu ~r) are  
often unsat isfactory react ivi ty indexes; however,  by analogy, one should not suppose that the total charges 
(Q/z) are  a lso ineffective in this plan. The resul ts  of the corre la t ion of the react ivi t ies  of molecules with 
the Q/~ values found by the CNDO/2 method with allowance for all of the valence electrons [39, 42], as well 
as the resul ts  of this study, make it possible to hope to retain the calculated total charge of an isolated 
center  as a "good" index of its react ivi ty.  When making a compar ison with the experimental  values,  it is 
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also n e c e s s a r y  to bear  in mind that the effects  of the m o l e c u l e ' s  in terac t ion  with the medium (protonation, 
complexing,  etc.) may also substant ia l ly  affect  the distr ibution of charges .  Thus,  for  example ,  according 
to the CNDO/2 calculation,  both e lec t ron ic  populations of the C 2 a tom (Q2 C and q2 C) for  the IB f o r m  for  X= 
S a re  cons iderably  lower  in absolute value than the cor responding  populations of the oxygen a t o m  (QCHO O 
and qcHoO) .  However ,  Q2 C ~ QCHO O for  protonated f o r m s  IIA and IIB, although q2 C -~ (1/~)qCHO U, as before:  

Thus the schemes  of calculat ion with al lowance for all of the va lence  e lec t rons  may  lead to conclu-  
sions re la t ive  to the charge  dis tr ibut ion in the molecule  that differ  quali tat ively f rom those obtained in the 
~r-electron approximat ion  and, for  this r eason ,  p resuppose  a fundamental ly different  in terpre ta t ion  of the 
exper imen ta l  data. In this connection, the I t -e lec t ron  approximat ion  may be inadequate for  the examinat ion 
of p rob l ems  of the r eac t iv i t i e s  of molecu les .  As demons t ra t ed  in the p resen t  paper ,  the charges  on the 
a toms  calculated with allowance for  all  of the va lence  e lec t rons  make it poss ib le  to uncover  the r easons  
s the exper imenta l ly  known changes in the r eac t iv i t i e s  of molecules  a s soc ia ted  with the i r  in te rac t ionwi th  
the medium (with a prot ic  acid,  in our case) .  It should be emphas ized  that the protonated fo rms  that  we 
examined a re  of in te res t  not only in t hemse lves  but also as model sy s t ems .  The r e su l t s  obtained for  them 
make it poss ib le  to judge the pr inc ipa l  tendencies  in the redis t r ibut ion  of the e lec t ron  density caused by 
in teract ion of a carbonyl  compound with Lewis acids .  The l a t t e r  is especia l ly  impor tant  for  furfural ,  since 
the re  a r e  no data on the effect  of protoaat ion  on the specif ici ty  of e lec t rophi l ic  substi tution in the furan s e r -  
ies  because  of the acidophobic c h a r a c t e r  of furan compounds.  The calculat ion of complexes  of furfural  and 
2- formyl th iophene  with a luminum chloride would cer ta in ly  be of definite in te res t .  This p rob lem,  which is 
substant ia l ly  more  complex than the calculat ion p e r f o r m e d  in this paper ,  will be the subject  of our sub-  
sequent invest igat ions.  
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